$$(f^{-1})'(a) = \frac{1}{f'(f^{-1}(a))}.$$

- Note To use the above formula for (f⁻¹)'(a), you do not need the formula for f⁻¹(x), you only need the value of f⁻¹ at a and the value of f' at f⁻¹(a).
- Example Consider the function $f(x) = \sqrt{4x + 4}$. Find $(f^{-1})'(4)$.
- Using a = 4, the formula says $(f^{-1})'(4) = \frac{1}{f'(f^{-1}(4))}$
- We calculate $f'(f^{-1}(4))$ from the inside out starting with $f^{-1}(4)$.
- Recall our method: $f^{-1}(4) = b$ if and only if f(b) = 4 if and only if $\sqrt{4b+4} = 4$ if and only if 4b+4 = 16 if and only if b = 3; so $f^{-1}(4) = 3$
- ► Therefore $f'(f^{-1}(4)) = f'(3)$. $f'(x) = \frac{1}{2}(4x+4)^{-1/2}4 = \frac{2}{\sqrt{4x+4}}$ by the chain rule and we get $f'(f^{-1}(4)) = f'(3) = 1/2$.
- Finally, we have $(f^{-1})'(4) = \frac{1}{f'(f^{-1}(4))} = 1/(1/2) = 2$.

Example Find the equation of the tangent line to the graph of the function $f^{-1}(x)$ at x = 4 where $f(x) = \sqrt{4x + 4}$.

• The equation of the tangent line to $f^{-1}(x)$ at x = 4

$$(y - f^{-1}(4)) = (f^{-1})'(4)(x - 4)$$

• We've already figured out that $f^{-1}(4) = 3$ and $(f^{-1})'(4) = 2$.

• Therefore the equation of the tangent line to $f^{-1}(x)$ at x = 4

$$(y-3) = 2(x-4)$$
 or $y = 2x-5$.

Example Let $f(x) = \sqrt{x+1} + \tan(x)$. Find $(f^{-1})'(1)$.

- Using a = 1, the formula says $(f^{-1})'(1) = \frac{1}{f'(f^{-1}(1))}$
- We calculate $f'(f^{-1}(1))$ from the inside out starting with $f^{-1}(1)$.
- We have $f^{-1}(1) = x$ is the same as saying that $1 = \sqrt{x+1} + \tan(x)$.
- It is very difficult to solve for x in the above equation, however we can use a little guesswork.
- Since 1 = √0 + 1 + tan(0), we must have x = 0 is the unique value of x which solves the equation.
- Thus $f^{-1}(1) = 0$.
- Hence $f'(f^{-1}(1)) = f'(0)$.
- We have $f'(x) = \frac{1}{\sqrt{x+1}} + \sec^2(x)$ and therefore f'(0) = 1 + 1 = 2.
- Thus we have $(f^{-1})'(1) = \frac{1}{f'(f^{-1}(1))} = \frac{1}{2}$

Example If f is a one-to-one function with the following properties:

$$f(10) = 21, f'(10) = 2, f^{-1}(10) = 4.5, f'(4.5) = 3.$$

Find $(f^{-1})'(10)$.

- ▶ Using a = 10, the formula says $(f^{-1})'(10) = \frac{1}{f'(f^{-1}(10))}$
- We calculate $f'(f^{-1}(10))$ from the inside out starting with $f^{-1}(10)$.
- We know that f⁻¹(10) = 4.5, therefore f'(f⁻¹(10)) = f'(4.5) which we know to be 3.

• Therefore
$$(f^{-1})'(10) = \frac{1}{f'(f^{-1}(10))} = \frac{1}{3}$$