Using the formula for the derivative of f^{-1}.

$$
\left(f^{-1}\right)^{\prime}(a)=\frac{1}{f^{\prime}\left(f^{-1}(a)\right)}
$$

- Note To use the above formula for $\left(f^{-1}\right)^{\prime}(a)$, you do not need the formula for $f^{-1}(x)$, you only need the value of f^{-1} at a and the value of f^{\prime} at $f^{-1}(a)$.
$>$ Example Consider the function $f(x)=\sqrt{4 x+4}$. Find $\left(f^{-1}\right)^{\prime}(4)$.
$>$ Using $a=4$, the formula says $\left(f^{-1}\right)^{\prime}(4)=\frac{1}{f^{\prime}\left(f^{-1}(4)\right)}$
$>$ We calculate $f^{\prime}\left(f^{-1}(4)\right)$ from the inside out starting with $f^{-1}(4)$.
- Recall our method:
$f^{-1}(4)=b$ if and only if $f(b)=4$ if and only if $\sqrt{4 b+4}=4$ if and only if $4 b+4=16$ if and only if $b=3$; so $f^{-1}(4)=3$
Therefore $f^{\prime}\left(f^{-1}(4)\right)=f^{\prime}(3) . f^{\prime}(x)=\frac{1}{2}(4 x+4)^{-1 / 2} 4=\frac{2}{\sqrt{4 x+4}}$ by the chain rule and we get $f^{\prime}\left(f^{-1}(4)\right)=f^{\prime}(3)=1 / 2$.
$>$ Finally, we have $\left(f^{-1}\right)^{\prime}(4)=\frac{1}{f^{\prime}\left(f^{-1}(4)\right)}=1 /(1 / 2)=2$.

Using the formula for the derivative of f^{-1}.

Example Find the equation of the tangent line to the graph of the function $f^{-1}(x)$ at $x=4$ where $f(x)=\sqrt{4 x+4}$.

- The equation of the tangent line to $f^{-1}(x)$ at $x=4$

$$
\left(y-f^{-1}(4)\right)=\left(f^{-1}\right)^{\prime}(4)(x-4)
$$

- We've already figured out that $f^{-1}(4)=3$ and $\left(f^{-1}\right)^{\prime}(4)=2$.
- Therefore the equation of the tangent line to $f^{-1}(x)$ at $x=4$

$$
(y-3)=2(x-4) \quad \text { or } \quad y=2 x-5 \text {. }
$$

Using the formula for the derivative of f^{-1}.

Example Let $f(x)=\sqrt{x+1}+\tan (x)$. Find $\left(f^{-1}\right)^{\prime}(1)$.
$>$ Using $a=1$, the formula says $\left(f^{-1}\right)^{\prime}(1)=\frac{1}{f^{\prime}\left(f^{-1}(1)\right)}$
$>$ We calculate $f^{\prime}\left(f^{-1}(1)\right)$ from the inside out starting with $f^{-1}(1)$.
$>$ We have $f^{-1}(1)=x$ is the same as saying that $1=\sqrt{x+1}+\tan (x)$.

- It is very difficult to solve for x in the above equation, however we can use a little guesswork.
$>$ Since $1=\sqrt{0+1}+\tan (0)$, we must have $x=0$ is the unique value of x which solves the equation.
$>$ Thus $f^{-1}(1)=0$.
$>$ Hence $f^{\prime}\left(f^{-1}(1)\right)=f^{\prime}(0)$.
$>$ We have $f^{\prime}(x)=\frac{1}{\sqrt{x+1}}+\sec ^{2}(x)$ and therefore $f^{\prime}(0)=1+1=2$.
Thus we have $\left(f^{-1}\right)^{\prime}(1)=\frac{1}{f^{\prime}\left(f^{-1}(1)\right)}=\frac{1}{2}$

Using the formula for the derivative of f^{-1}.

Example If f is a one-to-one function with the following properties:

$$
f(10)=21, \quad f^{\prime}(10)=2, \quad f^{-1}(10)=4.5, \quad f^{\prime}(4.5)=3 .
$$

Find $\left(f^{-1}\right)^{\prime}(10)$.
$>$ Using $a=10$, the formula says $\left(f^{-1}\right)^{\prime}(10)=\frac{1}{f^{\prime}\left(f^{-1}(10)\right)}$
We calculate $f^{\prime}\left(f^{-1}(10)\right)$ from the inside out starting with $f^{-1}(10)$.

- We know that $f^{-1}(10)=4.5$, therefore $f^{\prime}\left(f^{-1}(10)\right)=f^{\prime}(4.5)$ which we know to be 3 .
$>$ Therefore $\left(f^{-1}\right)^{\prime}(10)=\frac{1}{f^{\prime}\left(f^{-1}(10)\right)}=\frac{1}{3}$

